" JUN 26 PM 2: 34

MISSISSIPPI STATE DEPARTMENT OF HEALTH BUREAU OF PUBLIC WATER SUPPLY CCR CERTIFICATION

CALENDAR YEAR 2013 AFG

iblic Water Supply Name List PWS ID #s for all Community Water Systems included in this CCR

The Federal Safe Drinking Water Act (SDWA) requires each Community public water system to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. You must mail, fax or email a copy of the CCR and Certification to MSDH. Please check all boxes that apply.

Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)

Advertisement in local paper (attach copy of advertisement) On water bills (attach copy of bill) Email message (MUST Email the message to the address below) Other	
Date(s) customers were informed: (Cc /12 /2014, Cc /25 /2014, Cc / 26, / 2014	
CCR was distributed by U.S. Postal Service or other direct delivery. Must specify other direct methods used	t deliver
Date Mailed/Distributed:/_/	
CCR was distributed by Email (MUST Email MSDH a copy) As a URL (Provide URL 11+175:// Krows 9022 3/croncres/weekly-emails As an attachment As text within the body of the email message	<u>0</u> 44
CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)	
Name of Newspaper: KPCSICK NOWS	•
Date Published: C6 / 26 / 2014	
CCR was posted in public places. (Attach list of locations) Date Posted://	
CCR was posted on a publicly accessible internet site at the following address (DIRECT URL REQU	ЛRED):

CERTIFICATION

I hereby certify that the 2013 Consumer Confidence Report (CCR) has been distributed to the customers of this public water system in the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply.

Name/Title (President, Mayor, Owner, etc.)

http://www.keeser.ac.mil/obrary/

Deliver or send via U.S. Postal Service: Bureau of Public Water Supply P.O. Box 1700 Jackson, MS 39215

May be faxed to: (601)576-7800

May be emailed to: Melanie. Yanklowski@msdh.state.ms.us

Consumer Confidence Report 2013

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Keesler AFB's drinking water is pumped from the Lower Graham Ferry Aquifer; a groundwater source. All water provided to Keesler is pumped from wells located on base property. The water from the wells is mixed, treated, stored, and distributed.

Source water assessment and its availability

The purpose of a source water assessment is to determine the quality of the raw water used for drinking water. At Keesler, the only treatment performed on source water is the addition of chlorine and fluoride. Because of the limited chemical treatment, the analytical results for Keesler's drinking water are representative of its source water.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk, More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

Education is the key to getting involved and understanding your drinking water. Additional information is available from the Environmental Protection Agency; viewable on the WWW at http://www.epa.gov/safewater/

Monitoring and reporting of compliance data violations

Keesler AFB received a notice of violation for the period of 04/01/2013-04/30/2013. We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During April 2013 we did not complete all monitoring or testing for bacteriological and chlorine contaminants and therefore cannot be sure of the quality of our drinking water during that time. The following specifies the corrective actions this public water supply has taken in response to this violation:

All the usual samples were collected and sent to the Mississippi State Department of Health (MSDH) in April 2013. All sample results from the MSDH found the system to be safe for consumption. However, some of the samples were labeled incorrectly, which means that the State of Mississippi, by law, wasn't allowed to count them. This means that, by the letter of the law, we didn't send enough samples to the State of Mississippi in April 2013. This was an administrative problem rather than a water quality issue. Since this is a violation of the Mississippi Drinking Water Standards, we must notify you. We have taken measures to improve our program administration and thus avoid any issues like this in the future. People who use our

water system can rest assured that Keesler AFB meets all Mississippi safety standards and our water is safe to drink.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Keesler AFB 240049 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

	MCLG	MCL,						
	or	TT, or	Your	Ra	inge	Sample		
<u>Contaminants</u>	MRDLG	<u>MRDL</u>	<u>Water</u>	Low	High	<u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Disir	nfectant By	-Produc	ts					
(There is convincing e	vidence tha	t addition	of a disi	nfecta	nt is nec	cessar, fo	r control of r	nicrobial contaminants)
Haloacetic Acids (HAA5) (ppb)	NΛ	60	13	ND	13	2012	No	By-product of drinking water chlorination
Chlorine (as Cl2) (ppm)	4	4	1.1	0.3	2.54	2013	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	14.4	ND	14.4	2012	No	By-product of drinking water disinfection
Inorganic Contamin	ants							
Cyanide [as Free Cn] (ppb)	200	200	43.48	ND	43.48	2011		Discharge from plastic and fertilizer factories; Discharge from steel/metal factories

Volatile Organic Cor	itaminants	3									
Xylenes (ppm)	10	10	2.36	ND	2.3	36	2013		No	fac	scharge from petroleum tories; Discharge from mical factories
			Your	Sam	ple	h	Sampl	es	Exceed	is	
<u>Contaminants</u>	<u>MCLG</u>	AL	<u>Water</u>	<u>Dat</u>	<u>e</u>	Ex	ceeding	AL	AL		Typical Source
Inorganic Contamin	ants										
Copper - action level at consumer taps (ppm)	1,3	1.3	0.3	201	1		()		No	I	Corrosion of household plumbing systems: Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	3	201	11		()		No	l	Corrosion of household plumbing systems: Erosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

	MCLG	MCL			
	or	or	Your		
<u>Contaminants</u>	MRDLG	MRDL	Water	<u>Violation</u>	Typical Source
Nitrate [measured as Nitrogen] (ppm)	10	10	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage: Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	l	i i	ND	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Toluene (ppm)	1	1	ND	No	Discharge from petroleum factories
Benzene (ppb)	0	5	ND	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	ND	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (monochlorobenzene) (ppb)	100	100	ND	No	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	600	600	ND	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	ND	No	Discharge from industrial chemical factories
1,2-Dichloroethane (ppb)	0	5	ND	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	ND	No	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	70.	70	ND	No	Discharge from industrial chemical factories
trans-1,2- Dichloroethylene (ppb)	100	100	ND	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	ND	. No	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	No	Discharge from industrial chemical factories

Ethylbenzene (ppb)	700	700	ND	No	Discharge from petroleum refineries	
Styrene (ppb)	100	100	ND	No	Discharge from rubber and plastic factories; Leaching from landfills	
Tetrachloroethylene (ppb)	0	5	ND	No	Discharge from factories and dry cleaners	
1,2,4-Trichlorobenzene (ppb)	70	70	ND	No	Discharge from textile-finishing factories	
1,1,1-Trichloroethane (ppb)	200	200	ND	No	Discharge from metal degreasing sites and other factories	
1,1,2-Trichloroethane (ppb)	3	5	ND	No	Discharge from industrial chemical factories	
Trichloroethylene (ppb)	0	5	ND	·No	Discharge from metal degreasing sites and other factories	
Vinyl Chloride (ppb)	0	2	ND	No	Leaching from PVC piping; Discharge from plastics factories	

ait Descriptions								
Term	Definition							
ppm	ppm: parts per million, or milligrams per liter (mg/L)							
ppb	ppb: parts per billion, or micrograms per liter (μg/L)							
NA	NA; not applicable							
ND	ND: Not detected							
NR	NR: Monitoring not required, but recommended.							

Important Drinking Water Definition	18
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
, MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water,
Al.	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL.	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: Justina Law

Address:

301 Fisher St. Bldg. 420 Keesler AFB, MS 39534 Phone: 228-376-0590 Fax: 228-376-0197

E-Mail: 81amds.bio2@us.af.mil

KEESLER NEWS, Train. Fight. Win.

JUNE 12, 2014 VOL. 75 NO. 28

Sheltering exercise readies base for hurricane season

Hurricane Hunters fly first mission

Page 19

Women join in. medical escort program

Commentary, 2

Dragon Achievement, 4 News and Features, 6-24

www.keesler.af.mil

MPL: State Assigned Maximum Permissible Level

Keesler's annual water quality report released

B1st Aerospace Medicine Squadron

Consumer Confidence Report 2013

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosportidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Keesler AFB's drinking water is pumped from the Lower Graham Ferry Aquifer; a groundwater source. All water provided to Keesler is pumped from weels located on base property. The water from teh weels is mixed, treated, stored, and distributed.

Source water assessment and its availability

The purposed of a source water assessment is to determine the quality of the raw water used for drinking water. At Keesler, the only treatment performed on source water is the addition of chlorine and fluoride. Because of the limited chemical teratment, the analytical results for Keelser's drinking water are representative of its source water.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial

See Water, Page 16

	MCLG	MCL,	T					************		CHANGE OF THE PROPERTY OF THE	
Contaminants	or MRDLG	TT, or MRDL		10000	nge Hiph	Sample Date	Vic	lation		Typical Source	
	infectants & Disinfectant By-Produc			1222		1 -2.1123			ــــا		
There is convincing of	***	arteromercentales	00000000000000000000000000000000000000	infecta	at is ne	cessary fo	rcor	trol of t	nic	robial contaminants)	
Haloacetic Acids (HAA5) (ppb)	NA	60	13	ND	13	2012		No	B	-product of drinking water lorination	
Chlorine (as Cl2) (ppm)	4	4	1.1	0.3	2.54	2013		No	3	ater additive used to contro crobes	
TTHMs [Total Trihalomethanes] (ppb)	NA	80	14.4	ND	14.4	2012	No By-product of drinkin disinfection			-product of drinking water sinfection	
Inorganic Contamin	ants										
Cyanide [as Free Cn] (ppb)	200	200	43.48	ND	43.48	2011		No	fe	scharge from plastic and tillizer factories; Discharge im steel/metal factories	
Volatile Organie Co	nteminants	,									
Xylenes (ppm)	10	10	2.36	ND	2.36	2013			fac	scharge from petroleum tories; Discharge from emical factories	
			Your	Sam	ple	# Sampl	e s	Excee	ls		
Contaminants	MCLG	AL	Water	Dat	e E	xceeding	AL	ΔL		Typical Source	
Inorganic Contamin	ants										
Copper - action level										Corrosion of household	
at consumer taps (ppm)	1.3	1.3	0.3	20		0.		No		plumbing systems; Erosio of natural deposits	
Lead - action level at consumer taps (ppb)	0	15	3	20	11	0		No		Corresion of household plumbing systems; Erosio of natural deposits	
Unit Descriptions											
Te	rm						De	linition			
pţ	m		ppm: parts per million, or milligrams per liter (mg/L)								
pi	ob de		ppb: parts per billion, or micrograms per liter (µg/L)								
N	A		NA: not applicable								
N	D		ND: Not detected								
N	R		NR: Monitoring not required, but recommended.								
									~~~		
Important Drinking	Water Def	initions									
Te	rm	·	Definition								
МС	LG		MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.								
Me	ÜL		MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.								
Т	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.										
A	AL: Action Level: The concentration of a contaminant which, if exceeded triggers treatment or other requirements which a water system must follow.										
Variances and	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.										
MRDLG				MRDLG: Maximum residual distinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.							
MR	DL		disinfe	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.							
M?	√R					MNR: M	mito	red Not	Re	gulated	
				MNR: Monitored Not Regulated							

#### Water.

#### from Page 13

contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

#### How can I get involved?

Education is key to getting involved and understanding your drinking water. Additional information is aviable from the Environmental Protection Agency; viewable on the WWW at http://www.epa. gov/safewater/

#### Description of water treatment process

Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century.

#### Water conservation tips

Did vou know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons
- * Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- · Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- · Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
  - Water plants only when necessary.
- * Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace.

food coloring in the tank and wait. If it seeps into the tollet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.

- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evapora-
- · Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- · Visit www.epa.gov/watersense for more infor-

#### **Cross Connection Control Survey**

The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary.

- . Boiler/ Radiant heater (water heaters not inchided)
  - Underground lawn sprinkler system
  - * Pool or hot tub (whirlpool tubs not included)
  - · Additional source(s) of water on the property
  - Decorative pond
  - · Watering trough

#### Source water protection tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- · Eliminate excess use of lawn and garden fertilizers and pesticides - they contain hazardous chemicals that can reach your drinking water source.
  - · Pick up after your pets.
- · If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.
- · Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste — Drains to River" or "Proteet Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

#### Required fluoridation information for 2013

To comply with the "Regulation Governing Fluo-To cheek year toiler for a leak place a tew drops of ridation of Community Water Supplies", KEESLER

AIR FORCE BASE is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluoride sample results were within optimal range of 0.7-1.3 ppm was 12. The percentage of fluoride samples collected in the previous calendar year that was within optimal range was 88%.

#### Monitoring and reporting of compliance data violations

Keesler AFB recieved a notice of violation for the period of 04/01/2013-04/30/2013. We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During April 2013 we did not complete all monitoring or testing for bacteriological and chlorine contaminants and therefore cannot be sure of the quality of our drinking water during that time.

The following specifies the corrective actions this public water supply has taken in response to this violation:

All the usual samples were collected and sent to the Mississippi State Department of Health (MSDH) in April 2013. All sample results from the MSDH found the system to be safe for consumption. However, some of the samples were labeled incorrectly, which means that the State of Mississippi, by law, wasn't allowed to count them. This means that, by the letter of the law, we didn't send enough samples to the State of Mississippi in April 2013. This was an administrative problem rather than a water quality issue. Since this is a violation of the Mississippi Drinking Water Standards, we must notify you. We have taken measures to improve our program administration and thus avoid any issues like this in the future. People who use our water system can rest assured that Keesler AFB meets all Mississippi safety standards and our water is safe to drink.

#### Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Keesler AFB 240049 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.cpa.gov/safewater/lead.



# KEESLER NEWS, Train. Fight. Win.

JUNI 26, 2014 WOL. 75 NO. 25

# 336th TRS raising funds one pie at a time

Page 13

Colonel Vivians retires

Page 4

Picnic held for lamily members of deployed

Page C

Recycling system designed for Keesler splash pad

Page 19

## Secretary of the Air Force James outlines changes for nuclear force

By Army Sgt. 1st Class Tyrone Marshall Jr.

American Forces Press Service

WASHINGTON—Secretary of the Air Force Deborah Lee James outlined new incentives and measures designed to change the culture of the service's nuclear force June 17.

Following a cheating scandal involving intercontinental ballistic missile launch officers at Malmstrom Air Force Base, Montana, and the subsequent relief of nine officers, a commander's retirement and 91 other airmen receiving discipline, James touched on ways the Air Force has begun to address "systemic issues."

"I do think this is more than a single issue," she said in remarks at a Defense Writers Group breakfast. "As I've said before, I do think we need some holistic fixes for the nuclear force. This is not something that happened in the last year or two, or even 10. It's probably been happening gradually over the last 25 years."

The secretary said while there are likely no quick fixes to resolve these issues, there are measures she and Air Force Chief of Staff Gen. Mark A. Welsh III can implement now.

"Let's talk money," James said. "Money is not everything, but money's important. So right now, in [fiscal year 2014], just in the last few months, we have redirected \$50 million—\$50 million, by the way, is the most that the Global Strike Command said they could reasonably spend in [the fiscal year]."

Money should be spent reasonably, she said, so in addition to \$50 million, \$350 million more will be redirected to the nuclear mission over the next five years. The money will go to sustainment infrastructure and to some of the "people issues," the secretary added.

There could be more to come, James said, but this is what officials have decided so far.

Another issue being addressed is undermanning in the nuclear force, the secretary told the defense writers.

"When you're undermanned, that means the existing people have to work harder," she said. "That impacts morale and it could impact other things as well. We have, right now, already directed 1,100 additional people are going to be inserted into the nuclear force to get those manning levels up."

They principally will be in the field, she said, and the Air Force is going to 100-percent manning in the eight critical nuclear specialties. Air

Force officials have lifted some of the ongoing servicewide manpower reductions to add people back into the nuclear force, she added.

Along with those adjustments, the secretary noted, she has called for elevating the Global Strike Command commander's position to the four-star level and that the related major general position on the Air Force staff be made a lieutenant general position.

"We want to up the rank of the nuclear forces within the Air Force," she said. "Rank matters in the military, so that's another thing that we're doing."

Additionally, James said, the testing environment that produced the cheating scandal has been revamped, and the inspections environment will also see changes.

"It had become this zero-defect mentality, where even the smallest of the small kinds of errors could cause an entire failure," she explained. "That wasn't a healthy environment."

In the fall, James said, the Air Force also will introduce a variety of new financial incentives for the nuclear force "to kick it up a notch," including offering accession bonuses for new officers' ROTC scholarships and incentive pay.

James also noted 20th Air Force commander, Maj. Gen. Jack Weinstein, has issued a series of directives to the field designed to start to shift the culture.

"Now, you know memos don't shift culture," she said. "Leadership and time eventually shifts culture, but this is a start. This is designed to stop the micromanaging, to push down to the lower levels [and encourage] decision-making."

All of that will help, James said.

"We didn't get here overnight, and we're not going to fix it overnight," she added.

It will take persistent focus, leadership and attention for years to come, she said.

"With all of what I've just said, I'm certain that additional resources are probably still in order," James said. "We're going to have to talk about those resources as we get into the next [program objective memorandum] cycle."

James said she believes the U.S. nuclear mission is a national mission for the entire Defense Department, not just the Air Force.

"So I'll be talking to the deputy [defense] secretary, the secretary of defense [and] the senior leaders of DOD to see what we can do about this," she said.

#### Undetected contaminants

The following contaminants were monitored for, but not detected, in your water.

	MCI.G	MCL ar	Your				
Contentionale	MRDLC	MILDL	Mater	Violatica	Lypical Source		
Nitrate (meanined as Nitragen) (ppm)	ţú	10	NĐ	No	Rusoff from ferilitar vect i, enching from septic tasks, sewage: Finsion i nemul deposits		
Nirric (measured as Nirrogen) (past)	ı	ž	SHD	No	Reput? from furtilizes use: Leaching from sepsic tanks, sewage; Erostion of natural deposits		
Tofueno (ppra)	1	1	NO	No	This dauge from petroleum fatauries		
Bennins (pph)	Û	.5	ND	No	Discharge from factories; Leaching from gas storage tasks and landfills		
Carbon Torrachkoride (pph)	9	5	ÑĐ	Ne	Einschunge from chemical plants and other undustrial activities		
('biorabermene (raomochlosobrnatsie') (ggb)	100	100	MD	No	Discharge from observical and agricultural chambral factories		
a-Dichlorebenzers (pph)	600	600	NĐ	No	Discharge from industrial charoloal factories		
p-Dichlorobenzone (pph)	75	75	ND	No	Discharge frem industrial chemical factories		
(dopt) and descriptions (popular	9	5	ĠΝ	Ne	Discharge from industrial chemical tactories		
1,1-Dichloraethylene (ppb)	7	7	NĐ	Ne	Discharge from industrial eleminal factories		
uls-1,2-(Heblomoethylana (DDB)	70	70	ND	Nο	Discharge from industrial chemical factories		
trans-1.2- Dichtoroethylene (pph)	100	100	NO	No	Discharge from Industrial oberationi Osciones		
Dichlorveneshaue (ppb)	0	3	ND	No	Discharge from pharmacoutical and chemical factories		
1.2-Dickloruproposo (ppb)	ð	5	ND	No	Discharge from industrial chemical factories		
Estaylbestrone (perb)	7(8)	706	ND	No	Discharge from petroleum refineries		
Styrens (ppb)	190	100	NO	No	Descharge from rubber and plantic factories; Leaching from buidfills		
Tetrachioroethylene (ppb)	3	-5	NO	No	Discharge firm factories and dry clossers		
1,2,4-Trichlorobousesse (ppb)	76	78	NO	No	Describing from textile-finishing (getteries		
1,1,1-Trichloroexbana (gph)	200	200	MD	No	Disoberge from metal degreasing risk and other factories		
(3,3,2-Trichiovactizme (ppb)	3	5	NO	No	Oncharge from industrial observable		
řnehlometkykao (ppb)	a	5	NO	No	Discharge from metal degressing situated other factories		
Vinyl Chlorida (ppb)	9	2	ND	No	Leaching from PVC piping; Discher from pasties factories		

This table is an additional table that was not included with the published Consumer Confidence Report 2013 from the June 12 issue. For the full report, please visit, http://www.keesler.af.mil/shared/media/document/AFD-140612-017.pdf





#### Recome a Keesler fan on Facebook

uniou foroback com/kacelorofh







HOME NEWS PHOTOS ART LIBRARY UNITS QUESTIONS PRESS RELEASE

PUBLIC AFFAIRS

JOIN THE AIR FORCE



The Official Web Site for Keesler Air Force Base

Contact Us Questions USA.gov Security and Privacy notice E-publishing Suicide Prevention SAPR IG EEO Accessibility/Section 508 No FEAR Act

#### **Keesler Air Force Base**





EFEED!

HOME NEWS PHOTOS ART LIBRARY UNITS QUESTIONS PRESS RELEASE

PUBLIC AFFAIRS

JOIN THE AIR FORCE

#### Library Library

This page will no longer update the PDF files for the Keesler News. Please refer to the front page, www.keesler.af.mil, for all stories and photos.

s page contains links and resources for the 81st Training Wing. For additional base information, visit our its page. For command information, visit the Library page of Air Education and Training Command. For the information about the Air Force in general, visit Air Force Link and its Library page.	
E. DELL'AND CONTROL OF THE CONTROL O	nn pn 1s



search Keesler

○ General ○ Images ○ Video View All RSS

Inside Keesler AFB

#### Special Information

Search

Newcomers
Retirees
Students
Keesler Spouses*
Volunteers
Housing
Environmental
Energy
Economic Impact Statement
FOCUS
Discipline Corner
Consumer Confidence Report

Important Hurricane Information

Directions to Harrison County Shelters Post Hurricane Checklist Harrison County Shelter Locations Hurricane Hunters Hurricane Katrina's Impact On Keesler *MDOT Hurricane Evacuation Guide National Hurricane Center Ready.gov Retirees Sheltering Information

*External Links

*The appearance of hyperlinks does not constitute endorsement by the 81st Training Wing, HQ Air Education & Training Command, the United States Air Force, or the Department of Defense, of the external Web site, or the information, products or services contained therein.

> Click here for more information

PERSONAL PROPERTY.					
III.	Kees	ler	News	201	

Jan	N/A	9	16	23	N/A
Feb	6	13	20	27	N/A
Mar	6	13	20	27	N/A
April	03	10	17	24	N/A
Мау	01	08	15	29	N/A

#### Keesler News 2013

	1	1	1	1	1
Jan	10	17	24	31	n/a
Feb	07	14	21	28	n/a
Mar	07	14	21	28	n/a
Apr	04	11	18	25	n/a
May	02	09	16	23	30
Jun	06	13	20	27	n/a
Jul	n/a	12	18	25	n/a
Aug	01	08	15	22	29
Sept	05	12	19	26	n/a
Oct	03	10	17	24	31
Nov	07	14	21	27	
Dec	05	12			

#### Keesler News 2012

Jan	05	12	19	26	
Feb	02	09	16	23	
Mar	01	08	15	22	29
Apr	05	12	19	26	
May	03	10	17	24	31
Jun	07	14	21	28	
July	n/a	12	19	26	
Aug	02	09	16	23	n/a
Sep	06	13	20	27	
Oct	04	11	18	25	
Nov	01	08	15	21	29
Dec	06	13	20		

#### Keesler News 2011

Jan	06	13	20	27	T
Feb	03	10	17	24	
Mar	03	10	17	24	31
Apr	07	14	21	28	
May	05	12	19	26	
June	02	09	16	23	30
July		14	21	28	
Aug	04	11	18	25	
Sept	01	08	15	22	29
Oct	06	13	20	27	
Nov	03	09	17	23	
Dec	01	08	15		

#### Keesler News 2010

Jan	07	14	21	28	
Feb	04	11	18	25	
Mar	04	11	18	25	
April	01	08	15	22	29
May	06	13	20	27	
June	03	10	17	24	
July	01	n/a	15	22	29
Aug	04	12	19	26	
Sept	02	09	16	23	30
Oct	07	14	21	28	
Nov	04	10	18	24	
Dec	02	09	16		

#### Keesler News 2009

Jan	08	15	22	29	
Feb	05	12	19	26	
Mar	05	12	19	26	
Apr	02	09	16	23	30
May	07	14	21	28	
Jun	04	11	18	25	
Jul	02		16	23	30
Aug	06	13	20	27	T
Sep	03	10	17	24	Т
Oct	01	08	15	22	29
Nov	05	12	19	25	
Dec	03	10	17		

#### Keesler News 2008

24	31	
21	28	
20	27	
17	24	
15	22	29
19	26	
24	31	
21	28	
18	25	
16	23	30
20	26	
18		
	21 20 17 15 19 24 21 18 16 20	21 28 20 27 17 24 15 22 19 26 24 31 21 28 18 25 16 23 20 26

#### Keesler News 2007

January	11	18	25		
February	01	08	15	22	
March	01	08	15	22	29
April	05	12	19	26	
May	03	10	17	24	31
June	07	14	21	28	
July	12	19	26		
August	02	09	16	23	30
September	06	13	20	27	
October	04	11	18	25	
November	01	08	15	21	
July August September October	07 12 02 06 04	14 19 09 13	21 26 16 20	23 27 25	

#### Keesler News 2006

Jan	12	19	26			
Feb	02	09	16	23		
Mar	02	09	16	23	30	
Арг	06	13	20	27		
May	04	11	18	25		

#### LAW, JUSTINA A SSgt USAF AETC 81 AMDS/SGPB

From:

BROWN, MOLLY D Capt USAF AETC 81 MDG/CCE

Sent:

Monday, June 16, 2014 11:58 AM

To:

81 MDG/Everyone

Subject:

'Everyone' Email for 16-23 June

Signed By:

molly.brown.1@us.af.mil

Importance:

High

"Everyone" email for 16-23 June: https://keews9022p3/operations/weekly_emails/

FW: After-hours entrance

FW: Invitation to Colonel Lawson's 19 June Retirement

FW: 81st MDOS 27 June Change of Command invitation

FW: Maj. Robert Smith 27 June Promotion Ceremony

FW: Invitation for Major Colby Benedict's 27 June Promotion

FW: Vol 2 No 23 AFMOA e-Blast

FW: 2013 Consumer Confidence Report (CCR)

FW: FOCUS story time on June 18 at Forest City

FW: Information on Interstate 110 closures in June

FW: New resources for Swank Healthcare

Photos - 12 June Retirement Ceremony for Miss Kay

**VR** 

stevep

STEPHEN H. PIVNICK, GS-11 Chief, Public Affairs 81st Medical Group 301 Fisher St. Room 5A-229 Keesler AFB MS 39534 (228) 376-3018 DSN 591-3018